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Abstract

Domain adaptation framework of GANs has achieved great progress in recent years
as a main successful approach of training contemporary GANs in the case of very
limited training data. In this work, we significantly improve this framework by
proposing an extremely compact parameter space for fine-tuning the generator.
We introduce a novel domain-modulation technique that allows to optimize only
6 thousand-dimensional vector instead of 30 million weights of StyleGAN2 to
adapt to a target domain. We apply this parameterization to the state-of-art domain
adaptation methods and show that it has almost the same expressiveness as the
full parameter space. Additionally, we propose a new regularization loss that
considerably enhances the diversity of the fine-tuned generator. Inspired by the
reduction in the size of the optimizing parameter space we consider the problem of
multi-domain adaptation of GANs, i.e. setting when the same model can adapt to
several domains depending on the input query. We propose the HyperDomainNet
that is a hypernetwork that predicts our parameterization given the target domain.
We empirically confirm that it can successfully learn a number of domains at once
and may even generalize to unseen domains. Source code can be found at this
github repository.

1 Introduction

Contemporary generative adversarial networks (GANs) [8, 14, 15, 13, 3] show remarkable perfor-
mance in modeling image distributions and have applications in a wide range of computer vision
tasks (image enhancement [18, 42], editing [9, 31], image-to-image translation [12, 46, 47], etc.).
However, the training of modern GANs requires thousands of samples that limits its applicability
only to domains that are represented by a large set of images. The mainstream approach to sidestep
this limitation is transfer learning (TL), i.e. fine-tuning the generative model to a domain with few
samples starting with a pretrained source model.

The standard approach of GAN TL methods is to fine-tune almost all weights of the pretrained model
[19, 22, 38, 37, 13, 44, 24, 6, 48]. It can be reasonable in the case when the target domain is very
far from the source one, e.g. when we adapt the generator pretrained on human faces to the domain
of animals or buildings. However, there is a wide range of cases when the distance between data
domains is not so far. In particular, the majority of target domains used in works [19, 37, 24, 6, 48]
are similar to the source one and differ mainly in texture, style, geometry while keep the same content
like faces or outdoor scenes. For such cases it seems redundant to fine-tune all weights of the source
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generator. It was shown in the paper [40] that after transfer learning of the StyleGAN2 [15] to similar
domains some parts of the network almost do not change. This observation motivates us to find a
more efficient and compact parameter space for domain adaptation of GANs.

In this paper, we propose a novel domain-modulation operation that reduces the parameter space
for fine-tuning the StyleGAN2. The idea is to optimize for each target domain only a single vector
d. We incorporate this vector into the StyleGAN2 architecture through the modulation operation at
each convolution layer. The dimension of the vector d equals 6 thousand that is 5 thousand times
less than the original weights space of the StyleGAN2. We apply this parameterization for the
state-of-the-art domain adaptation methods StyleGAN-NADA [6] and MindTheGAP [48]. We show
that it has almost the same expressiveness as the full parameterization while being more lightweight.
To further advance the domain adaptation framework of GANs we propose a new regularization loss
that improves the diversity of the fine-tuned generator.

Such considerable reduction in the size of the proposed parameterization motivates us to consider
the problem of multi-domain adaptation of GANs, i.e. when the same model can adapt to multiple
domains depending on the input query. Typically, this problem is tackled by previous methods just by
fine-tuning separate generators for each target domain independently. In contrast, we propose to train
a hyper-network that predicts the vector d for the StyleGAN2 depending on the target domain. We
call this network as HyperDomainNet. Such hyper-network would be impossible to train if we needed
to predict all weights of StyleGAN2. The immediate benefits of multi-domain framework consist of
reducing the training time and the number of trainable parameters because instead of fine-tuning n
separate generators we train one HyperDomainNet to adapt to n domains simultaneously. Another
advantage of this method is that it can generalize to unseen domains if n is sufficiently large and we
empirically observe this effect.

We provide extensive experiments to empirically confirm the effectiveness of the proposed parameter-
ization and the regularization loss on a wide range of domains. We illustrate that our parameterization
can achieve quality comparable with the full parameterization (i.e. when we optimize all weights).
The proposed regularization loss significantly improves the diversity of the fine-tuned generator that is
validated qualitatively and quantitatively. Further, we conduct experiments with the HyperDomainNet
and show that it can be successfully trained on a number of target domains simultaneously. Also we
show that it can generalize to a number of diverse unseen domains.

To sum up, our main contributions are

• We reduce the number of trainable parameters for domain adaptation of StyleGAN2 [15]
generator by proposing the domain-modulation technique. Instead of fine-tuning all 30
millions weights of StyleGAN2 for each new domain now we can train only 6 thousand-
dimensional vector.

• We introduce a novel regularization loss that considerably improves the diversity of the
adapted generator.

• We propose a HyperDomainNet that predicts the parameterization vector for the input
domain and allows multi-domain adaptation of GANs. It shows inspiring generalization
results on unseen domains.

2 Related Work

Domain Adaptation of GANs The aim of few-shot domain adaptation of GANs is to learn accurate
and diverse distribution of the data represented by only a few images. The standard approach is to
utilize a generator pretrained on source domain and fine-tune it to a target domain. There are generally
two different regimes of this task. The first one is when we adapt the generator to completely new
data (e.g. faces→ landscapes, churches, etc.), and the second regime is when the target domain
relates to the source one (e.g. faces→ sketches, artistic portraits, etc.).

Methods that tackle the first regime typically require several hundreds or thousands samples to adapt
successfully. Such setting assumes that the weights of the generator should be changed significantly
because the target domain can be very far from the source. The paper [13] shows that for distant
domains training from scratch gives comparable results to transfer learning. It also confirms that for
such regime there is no point to reduce the parameter space. Typcially such approaches utilize data
augmentations [13, 33, 44, 45], or use auxiliary tasks for the discriminator to more accurately fit the

2



available data [20, 41], or freeze lower layers of the discriminator to avoid overfitting [22]. Another
standard techniques for the effective training of GANs is to apply different normalization methods
[21, 16, 2] to stabilize the training process.

In the second regime the transfer learning is especially crucial because the pretrained generator
already contains many information about the target domain. In this setting the required number of
available data can be significantly smaller and range from hundreds to several images. The main
challenges in the case of such limited data are to avoid over-fitting of the generator and leverage its
diversity learned from the source domain. To tackle these challenges existing methods introduce
restrictions on the parameter space [29, 23], mix the weights of the adapted and the source generators
[26], utilize a small network to force sampling in special regions of the latent space [37], propose
new regularization terms [19, 34], or apply contrastive learning techniques to enhance cross-domain
consistency [24]. The state-of-the-art methods [6, 48] leverage supervision from vision-language
CLIP model [27]. StyleGAN-NADA [6] applies it for text-based domain adaptation when we have
no access to images but only to the textual description. MindTheGap [48] employs CLIP model to
further significantly improve the quality of one-shot domain adaptation.

Constraining Parameter Space for GAN’s Adaptation In the second regime of GAN’s adapta-
tion it is especially important for the generator to leverage the information from the source domain
during adapting to the target one. The common approach is to introduce some restrictions on the
trainable weights to regularize them during fine-tuning. For example, the work [29] proposes to opti-
mize only the singular values of the pretrained weights and apply it for few shot domain adaptation,
however the reported results show the limited expressiveness of such parameterization [29]. Another
method [23] constrains the parameter space for models with batch normalization (BN) layers such
as BigGAN [3] by optimizing only BN statistics during fine-tuning. While it allows to decrease
the number of trainable parameters, it also considerably reduces the expressiveness of the generator
[29, 24]. Other approach is to adaptively choose a subset of layers during optimization at each step as
in StyleGAN-NADA [6]. It helps to stabilize the training, however it does not reduce the parameter
space because each layer can potentially be fine-tuned. The alternative method is to optimize parame-
ters in the latent space of StyleGAN as in TargetCLIP [4] and the size of this space is much smaller
than the size of the whole network. However, such approach works mainly for in-domain editing and
shows poor quality in adapting to new domains. In contrast, our parameterization has the comparable
expressiveness and adaptation quality as the full parameter space while its size is less by three orders
of magnitude.

3 Preliminaries

In this work, we focus on StyleGAN generators in the context of domain adaptation. We con-
sider StyleGAN2 [15] as a base model. As the state-of-the-art domain adaptation methods we use
StyleGAN-NADA [6] and MindTheGAP [48].

StyleGAN2 The StyleGAN2 generation process consists of several components. The first part is a
mapping network M(z) that takes as an input random vectors z ∈ Z from the initial latent space, Z
that is typically normally distributed. It transforms these vectors z into the intermediate latent space
W . Each vector w ∈ W is further fed into different affine transformations A(w) for each layer of
the generator. The output of this part forms StyleSpace S [39] that consists of channel-wise style
parameters s = A(w). The next part of the generation process is the synthesis network Gsys that
takes as an input the constant tensor c and style parameters s at the corresponding layers and produces
the final feature maps at different resolutions F = Gsys(c, s). These feature maps move on to the
last part which consists of toRGB layers GtRGB that generate the output image I = GtRGB(F ).

Problem Formulation of Domain Adaptation The problem of domain adaptation of StyleGAN2
can be formulated as follows. We are given a trained generator GA for the source domain A, and
the target domain B that is represented by the one image IB (one-shot adaptation) or by the text
description tB (text-guided adaptation). The aim is to fine-tune the weights θ of a new generator GBθ
for the domain B starting from the weights of GA. The optimization process in the general form is

LB(θ) = L({GBθ (wi)}ni=1, {GA(wi)}ni=1, G
B
θ , B,A) → min

θ
, (1)
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where L is some loss function, n is a batch size, w1, . . . , wn are random latent codes, {GBθ (wi)}ni=1

and {GA(wi)}ni=1 are batches of images sampled by GBθ and GA generators, respectively, and B,A
are domains that are represented by images or text descriptions.

CLIP model CLIP [27] is a vision-language model that is composed of text and image encoders
ET , EI , respectively, that maps their inputs into a joint, multi-modal space of vectors with a unit
norm (this space is often called as CLIP space). In this space the cosine distance between embeddings
reflects the semantic similarity of the corresponding objects.

StyleGAN-NADA StyleGAN-NADA [6] is a pioneering work that utilizes the CLIP model [27]
for text-guided domain adaptation of StyleGAN. The proposed loss function is

∆T (B,A) = ET (tB)− ET (tA),

∆I(GBθ (w), GA(w)) = EI(G
B
θ (w))− EI(GA(w)),

Ldirection(GBθ (w), GA(w), B,A) = 1− ∆I(GBθ (w), GA(w)) ·∆T (B,A)

|∆I(GBθ (w), GA(w))||∆T (B,A)|
. (2)

The idea is to align the CLIP-space direction between the source and target images
∆I(GBθ (w), GA(w)) with the direction between a pair of source and target text descriptions
∆T (B,A). So, the overall optimization process has the form

LB(θ) =

n∑
i=1

Ldirection(GBθ (wi), G
A(wi), B,A) → min

θ
. (3)

In StyleGAN-NADA method the LB(θ) loss is optimized only with respect to the weights θ of the
synthesis network GBsys which has 24 million weights.

MindTheGap The MindTheGap method [48] is proposed for a one-shot domain adaptation of
StyleGAN, i.e. the domain B is represented by the single image IB . In principle StyleGAN-NADA
method can solve this problem just by replacing the text direction ∆T (B,A) from Equation (2) to an
image one

∆I ′(B,A) = EI(IB)− 1

|A|
∑
IA∈A

[EI(IA)], (4)

where
1

|A|
∑
IA∈A

[EI(IA)] is the mean embedding of the images from domain A. However, as stated

in [48] this leads to an undesirable effect that transferred images lose the initial diversity of domain
A and become too close to the IB image. So, the key idea of the MindTheGap is to replace the mean
embedding from Equation (4) by the embedding of projection I∗A of IB image to A domain obtained
by the GAN inversion method II2S [49]:

∆I ′′(B,A) = EI(IB)− EI(I∗A), (5)

So, the MindTheGap uses the modified L′direction loss that is renamed to Lclip_accross

Lclip_accross(G
B
θ (w), GA(w), B,A) = 1− ∆I(GBθ (w), GA(w)) ·∆I ′′(B,A)

|∆I(GBθ (w), GA(w))||∆I ′′(B,A)|
. (6)

In addition to this idea several new regularizers are introduced that force the generator GBθ to
reconstruct the IB image from its projection I∗A. It further stabilizes and improves the quality of
domain adaption. Overall, the MindTheGAP loss function LMTG has four terms to optimize GBθ .
For more details about each loss please refer to the original paper [48].

4 Approach

4.1 Domain-Modulation Technique for Domain Adaptation

Our primary goal is to improve the domain adaptation of StyleGAN by exploring an effective and
compact parameter space to use it for fine-tuning GBθ . As we described in Section 3 StyleGAN has
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Figure 1: Detailed diagram of proposed method. (a) Revised ModulatedConv block with introduced
domain-modulation operation. (b) Fully detailed training process of the domain adaptation with the
proposed domain-modulation technique.

four components: the mapping network M(·), affine transformations A(·), the synthesis network
Gsys(·, ·), and toRGB layers GtRGB(·). It is observed in the paper [40] that the main part of
StyleGAN that is mostly changed during fine-tuning to a target domain is the synthesis network
Gsys(·, ·). It is also confirmed by StyleGAN-NADA [6] and MindTheGap [48] methods as they adapt
only the weights of Gsys(·, ·) for the target domain.

So, we aim to find an effective way to fine-tune the weights of feature convolutions of Gsys(·, ·). In
StyleGAN2 [15] these convolutions utilize modulation/demodulation operations to process the input
tensor and the corresponding style parameters s. Let us revisit the mechanism of these operations:

modulation: w′ijk = si · wijk, (7)

demodulation: w′′ijk =
w′ijk√∑

i,k

w′ijk
2 + ε

, (8)

where w,w′ and w′′ are the original, modulated and demodulated weights, respectively, si is the
component of the style parameters s, i and j enumerate input and output channels, respectively. The
idea behind modulation/demodulation is to replace the standard adaptive instance normalization
(AdaIN) [35, 5] to a normalization that is based on the expected statistics of the input feature maps
rather than forcing them explicitly [15]. So, the modulation part is basically an adaptive scaling
operation as in AdaIN that is controlled by the style parameters s. This observation inspires us to use
this technique for the domain adaptation.

The problem of fine-tuning GANs to a new domain is very related to the task of style transfer where
the goal is also to translate images from the source domain to a new domain with the specified style.
The contemporary approach to solve this task is to train an image-to-image network which takes the
target style as an input condition. The essential ingredient of such methods is the AdaIN that provides
an efficient conditioning mechanism. In particular, it allows to train arbitrary style transfer models
[11]. So, it motivates us to apply the AdaIN technique for adapting GANs to new domains.

We introduce a new domain-modulation operation that reduces the parameter space for fine-tuning
StyleGAN2. The idea is to optimize only a vector d with the same dimension as the style parameters
s. We incorporate this vector into StyleGAN architecture by the additional modulation operation
after the standard one from Equation (7):

domain-modulation: w′ijk = di · wijk, (9)

where di is the component of the introduced domain parameters d (see Figure 1a). So, instead of
optimizing all weights θ of the Gsys part we train only the vector d.

We apply these new parameterization to StyleGAN-NADA and MindTheGAP methods, i.e. instead
of optimizing its loss functions wrt θ we optimize it wrt d vector (see Figure 1b) The dimension
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Figure 2: Detailed training process of the HyperDomainNet. On the training phase only reference
descriptions are included into CLIP-guided training.

of the vector d equals 6 thousand that is 4 thousand times less than the original weights space θ of
Gsys(·, ·) part. While the proposed parameter space is radically more constrained we observe that it
has the expressiveness comparable with the whole weight space.

4.2 Improving Diversity of CLIP-Guided Domain Adaptation

The CLIP-based domain adaptation methods StyleGAN-NADA and MindTheGap use Ldirection (or
Lclip_accross) loss (see Equations (2) and (6)) that was initially introduced to deal with the mode
collapsing problem of the fine-tuned generator [6]. However, we empirically observe that it solves
the issue only partially. In particular, it preserves the diversity only at the beginning of the fine-tuning
process and starts collapsing after several hundred iterations. It is a significant problem because for
some domains we need much more iterations to obtain the acceptable quality.

The main cause of such undesirable behaviour of the Ldirection (the same for Lclip_accross) loss is
that it calculates the CLIP cosine distance between embeddings that do not lie in the CLIP space.
Indeed, the cosine distance is a natural distance for objects that lie on a CLIP sphere but becomes
less evident for vectors ∆T,∆I that represent the difference between clip embeddings that no longer
lie on a unit sphere. Therefore, the idea behind the Ldirection loss may be misleading and in practice
we can observe that it still suffers from mode collapse.

We introduce a new regularizer for improving diversity that calculates the CLIP cosine distance only
between clip embeddings. We called it indomain angle consistency loss and we define it as follows

Lindomain−angle({GBd (wi)}ni=1, {GA(wi)}ni=1, B,A) = (10)

=

n∑
i,j

(〈EI(GA(wi)), EI(G
A(wj))〉 − 〈EI(GBd (wi)), EI(G

B
d (wj))〉)2, (11)

The idea of Lindomain−angle loss is to preserve the CLIP pairwise cosine distances between images
before and after domain adaptation. We observe that this loss significantly improves the diversity of
the generator GBd compared to the original Ldirection or Lclip_accross losses.

4.3 Designing the HyperDomainNet for Universal Domain Adaptation

The proposed domain-modulation technique allows us to reduce the number of trainable parameters
which motivates us to tackle the problem of multi-domain adaption of StyleGAN2. Our aim is to
train the HyperDomainNet that predicts the domain parameters given the input target domain. This
problem can be formulated as follows. We are given a trained generator GA for a source domain A
and a number of target domains B1, . . . , Bm that can be represented by the single image or the text
description. The aim is to learn the HyperDomainNet Dϕ(·) that can predict the domain parameters
dBi

= Dϕ(Bi) which will be used to obtain the fine-tuned generatorGBi

dBi
by the domain-modulation

operation (see Section 4.1).

In this work, we focus on the setting when the target domains B1, . . . , Bm are represented by text
descriptions tB1

, . . . , tBm
. The HyperDomainNet Dϕ(·) takes as an input the embedding of the text
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Figure 3: Comparison with the original StyleGAN-NADA [6] method (left) and its version with our
parameterization.

obtained by the CLIP encoder ET (·) and outputs the domain parameters dBi = Dϕ(ET (tBi)). The
training process is described in the Figure 2.

To train the HyperDomainNet Dϕ(·) we use the sum of Ldirection losses for each target domains. In
addition, we introduce Ltt−direction loss ("tt" stands for target-target) that is the same as Ldirection,
but we compute it between two target domains instead of target and source. The idea is to keep away
the images from different target domains in the CLIP space. We observe that without Ltt−direction
loss the HyperDomainNet tends to learn the mixture of domains.

In multi-domain adaptation setting, the regularizer Lindomain−angle becomes inefficient because
during training batch consists of samples from different domains and the number of images from one
domain can be very small. Therefore, we introduce an alternative regularization Ldomain−norm for
the HyperDomainNet that constrains the norm of the predicted domain parameters. To be exact it
equals to ‖Dϕ(ET (tBi))− 1‖2.

So, the objective function of the HyperDomainNet consists of Ldirection, Ltt−direction and
Ldomain−norm losses. For more detailed description of these losses the overall optimization process,
please refer to Appendix A.2.

5 Experiments

In this section, we provide qualitative and quantitative results of the proposed approaches. At first, we
consider the text-based domain adaptation and show that our parameterization has comparable quality
with the full one. Next, we tackle one-shot domain adaptation and confirm the same quantitatively and
also show the importance of the Lindomain−angle loss. Finally, we solve the multi-domain adaptation
problem by the proposed HyperDomainNet, show its generalization ability on unseen domains. For
the detailed information about setup of the experiments please refer to Appendix A.1.
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MTG (+indomain) Ours StyleGAN-NADA

Figure 4: Comparison with one-shot domain adaptation methods. Left block is MindThe-
Gap+indomain and right block is StyleGAN-NADA [48]. The middle block is the MindThe-
Gap+indomain with our parameterization.

Text-Based Domain Adaptation We compare the StyleGAN-NADA [6] method with the proposed
parameterization and the original version on a number of diverse domains. In Figure 3, we see that the
expressiveness of our parameterization is on par with the original StyleGAN-NADA. We observe that
the domain-modulation technique allows to adapt the generator to various style and texture changes.
For results on more domains please refer to Appendix A.3. We also provide quantitative results for
this setting in Appendix A.3.3 which show that our parameterization has the comparable performance
as the full one.

One-Shot Domain Adaptation In this part, we examine our parameterization and the indomain
angle consistency loss by applying them to the MindTheGap [48] method. We show qualitative
and quantitative results and compare them with other few-shot domain adaptation methods such as
StyleGAN-NADA, TargetCLIP [4] and Cross-correspondence [24] method. To assess the domain
adaptation quality we use the standard metrics FID [10], precision and recall [17]. As a target domain
we take the common benchmark dataset of face sketches [36] that has approximately 300 samples.
We consider the one-shot adaptation setting. We provide the results in Table 1. At fisrt, we see that
the MindTheGap with our parameterization shows comparable results with the original version while
having less trainable parameters by three orders of magnitude. While TargetCLIP has the same order
of parameters as our method it shows poor adaptation quality in terms of FID and Precision metrics
that indicate that it works only for in-domain editing (see also qualitative comparison in Appendix A.4
in Figure 19). Secondly, we examine the effectiveness of the indomain angle consistency. We show
that it considerably improves FID and precision metrics for both the original MindTheGap and the
one with our parameterization.

The qualitative results are provided in Figure 4 for MindTheGap+indomain, MindTheGap+indomain
with our parameterization ("Ours") and StyleGAN-NADA. For other methods please see Ap-
pendix A.4. We observe that MindTheGap+indomain and our version shows comparable visual
quality and outperform StyleGAN-NADA in terms of diversity and maintaining the similarity to the
source image.

Overall, we demonstrate that our parameterization is applicable to the state-of-the-art methods
StyleGAN-NADA and MindTheGap and it can be further improved by the indomain angle consistency
loss.

Multi-Domain Adaptation Now we consider the multi-domain adaptation problem. We apply the
HyperDomainNet in two different scenarios: (i) training on fixed number of domains, (ii) training on
potentially arbitrary number of domains. The first scenario is simple, we train the HyperDomainNet
on 20 different domains such as "Anime Painting", "Pixar", etc. (for the full list of domains please
refer to Appendix A.2.4). The second scheme is more complicated. We fix large number of domains
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Figure 5: Comparison of training setups. The top row represents the real images embedded into
StyleGAN2 latent space which latents are then used for HyperDomainNet inference. The left block
represents results obtained from text-descriptions presented in the train list. The right block represents
results of HyperDomainNet inference on unseen text-descriptions.

(several hundreds) and calculate its CLIP embeddings. During training we sample new embeddings
from the convex hull of the initial ones and use them in the optimization process (see Figure 2). This
technique allows us to generalize to unseen domains. For more details about both scenarios please
refer to Appendix A.2.

The results of the HyperDomainNet for both scenarios are provided in Figure 5. The left part is results
for the first setting, the right one is results for the unseen domains in the second scheme. For more
domains and generated images please refer to Appendix A.2. We see that in the first scenario the Hy-
perDomainNet shows results comparable to the case when we train separate models for each domain
(see Figure 3). It shows that the proposed optimization process for the HyperDomainNet is effective.
The results for the second scenario looks promising. We can observe that the HyperDomainNet has
learnt very diverse domains and shows sensible adaptation results for unseen ones.

We also provide an ablation study on the loss terms we use for training of the HyperDomainNet in
Appendix A.2.6. It demonstrates quantitatively and qualitatively that the proposed losses are essential
for the effective training of the HyperDomainNet in the setting of the multi-domain adaptation
problem.

Table 1: Evaluation of one-shot adaptation methods. Results for TargetCLIP, Cross-correspondence
and StyleGAN-NADA methods are taken from [48].

Model quality Model complexity
Model FID Precision Recall # trainable parameters

TargetCLIP [4] 199.33 0.000 0.293 9K
Cross-correspondence [24] 158.86 0.001 0 30M
StyleGAN-NADA [6] 124.55 0.118 0 24M
MindTheGap [48] 78.35 0.326 0.017 24M

MindTheGap (our param.) 79.83 0.452 0.017 6k

MindTheGap+indomain 71.46 0.503 0.014 24M
MindTheGap+indomain (our param.) 72.71 0.472 0.028 6k

9



6 Conclusion

We propose a novel domain-modulation technique that allows us to considerably reduce the number
of trainable parameters during domain adaptation of StyleGAN2. In particular, instead of fine-tuning
almost all 30 million weights of the StyleGAN2 we optimize only 6 thousand-dimensional domain
vector. We successfully apply this technique to the state-of-the-art text-based and image-based
domain adaptation methods. We show quantitatively and qualitatively that it can achieve the same
quality as optimizing all weights of the StyleGAN2.

To deal with the mode collapsing problem of the domain adaptation methods we introduce a new
indomain angle consistency loss Lindomain−angle that preserves the CLIP pairwise cosine distances
between images before and after domain adaptation. We demonstrate that it improves the diversity of
the fine-tuned generator both for text-based and one-shot domain adaptation.

We also consider the problem of multi-domain adaptation of StyleGAN2 when we aim to adapt to
several domains simultaneously. Before our proposed parameterization it was infeasible because we
should predict all weights of StyleGAN2 for each domain. Thanks to our efficient parameterization
we propose HyperDomainNet that predicts the 6 thousand-dimensional domain vector d for the Style-
GAN2 given the input domain. We empirically show that it can be trained to 20 domains successfully
which is the first time when the StyleGAN2 was adapted to several domains simultaneously. We also
train the HyperDomainNet for the large number of domains (more than two hundred) with applying
different augmentations to the domain descriptions (see details in Appendix A.2). We demonstrate in
practice that in such setting the HyperDomainNet can generalize to unseen domains.

Limitations and societal impact The main limitation of our approach is that it is not applicable
for the cases when target domains are very far from the source one. In such setting, we cannot limit
the parameter space, so we should use the full parameterization.

The potential negative societal impacts of domain adaptation of GANs and generally training of
GANs include different forms of disinformation, e.g. deepfakes of celebrities or senior officials, fake
avatars in social platforms. However, it is the issue of the whole field and this work does not amplify
this impact.
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A Appendix

A.1 Setup of the Experiments

A.1.1 Implementation Details

We implement our experiments using PyTorch5 deep learning framework. For StyleGAN2 [15]
architecture we use the popular PyTorch implementation 6. We attach all source code that reproduces
our experiments as a part of the supplementary material. We also provide configuration files to run
each experiment.

A.1.2 Datasets

We use source StyleGAN2 models pretrained on the following datasets: (i) Flickr-Faces-HQ (FFHQ)
[14], (ii) LSUN Church, (iii) LSUN Cars, and (iv) LSUN Cats [43]. As target domains we mainly
use the text descriptions from [6] and style images from [48]. For quantitative comparison with other
methods we use face sketches [36] as the standard dataset for domain adaptation.

A.1.3 Licenses and Data Privacy

Tables 2, 3 provide sources and licenses of the models and datasets we used in our work.

Table 2: Models used in our work, their sources and licenses.

Model Source License
StyleGAN2 [15] Nvidia Source Code License-NC
pSp [28] MIT License
e4e [32] MIT License
ReStyle [1] MIT License
StyleCLIP [25] MIT License
CLIP [27] MIT License
StyleGAN2-pytorch [30] MIT License
StyleGAN-ADA [13] Nvidia Source Code License
Cross-correspondence [24] Adobe Research License

Table 3: Datasets used in our work, their sources and licenses.

Dataset Source License
FFHQ [14] CC BY-NC-SA 4.07

LSUN [43] No License
Sketches [24] Adobe Research License

A.1.4 Total Amount of Compute Resources

We run our experiments on Tesla A100 GPUs. We used approximately 12000 GPU hours to obtain
the reported results and for intermediate experiments.

5https://pytorch.org
6https://github.com/rosinality/stylegan2- pytorch
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A.2 Training of the HyperDomainNet (HDN)

A.2.1 Training Losses

As we describe in Section 4.3 we train HDN Dϕ(·) using three losses Ldirection, Ltt−direction, and
Ldomain−norm. Each loss is defined as follows:

Ldirection(GBi

dBi
(w), GA(w), Bi, A) = 1−

∆I(GBi

dBi
(w), GA(w)) ·∆T (Bi, A)

|∆I(GBi

dBi
(w), GA(w))||∆T (Bi, A)|

, (12)

Ltt−direction(GBi

dBi
(w), G

Bj

dBj
(w), Bi, Bj) = 1−

∆I(GBi

dBi
(w), G

Bj

dBj
(w)) ·∆T (Bi, Bj)

|∆I(GBi

dBi
(w), G

Bj

dBj
(w))||∆T (Bi, Bj)|

, (13)

Ldomain−norm(Dϕ, Bi) = ‖Dϕ(ET (tBi))− 1‖2 (14)

Then the overall training loss for the HDN Dϕ(·) is

L(ϕ) = λdirection

m∑
i=1

Ldirection(GBi

Dϕ(ET (tBi
))(w), GA(w), Bi, A) +

(15)

+ λtt−direction

m∑
i 6=j

Ltt−direction(GBi

Dϕ(ET (tBi
))(w), G

Bj

Dϕ(ET (tBj
))(w), Bi, Bj) +

+ λdomain−norm

m∑
i=1

Ldomain−norm(Dϕ, Bi) (16)

A.2.2 Architecture of the HDN

We use the standard ResNet-like architecture for the HDN. It has the backbone part which has
10 ResBlocks and the part that consists of 17 heads. The number of heads equals the number of
StyleGAN2 layers in the synthesis network Gsys. Each head has 5 ResBlocks and outputs the domain
vector for the corresponding StyleGAN2 layer. We illustrate the overall architecture of the HDN in
Figure 6. It has 43M parameters. We use the same architecture for all experiments.

A.2.3 Inference Time

The inference time of the HDN network on 1 Tesla A100 GPU is almost the same as the one forward
pass through StyleGAN2 generator which works in 0.02 seconds.

A.2.4 Training on Fixed Number of Domains

For training the HDN on fixed number of domains we use the loss function from Equation (16).
As training target domains we take the following 20 domains (we provide in the format "the target
domain - the corresponding source domain"):

1. Anime Painting - Photo
2. Impressionism Painting - Photo
3. Mona Lisa Painting - Photo
4. 3D Render in the Style of Pixar - Photo
5. Painting in the Style of Edvard Munch - Photo
6. Cubism Painting - Photo
7. Sketch - Photo
8. Dali Painting - Photo
9. Fernando Botero Painting - Photo

10. A painting in Ukiyo-e style - Photo
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BatchNorm

Linear

BatchNorm
Linear

Input

Skip
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Head_1

Head_n

CLIP embedding

Residual Block

(c) High-level architecture of HDN

(a) Residual Block (b) High-level architecture of
Backbone and Heads

ReLU

Figure 6: Detailed HDN architecture diagram. (a) - base residual block which is included into
backbone and head parts of the HDN. (b) - the detailed backbone and head architecture, each module
use the same sequence of ResBlocks. (c) - the detailed architecture of the HDN with data flow.

11. Tolkien Elf - Human

12. Neanderthal - Human

13. The Shrek - Human

14. Zombie - Human

15. The Hulk - Human

16. The Thanos - Human

17. Werewolf - Human

18. Nicolas Cage - Human

19. The Joker - Human

20. Mark Zuckerberg - Human

Hyperparameters For 20 descriptions in training list following setup is considered. The HDN
trained for 1000 number of iterations. Batch size 24 is used. Weights of the terms from Equation (16)
as follows: λdirection = 1.0, λtt−direction = 0.4, λdomain−norm = 0.8. We use two Vision-
Transformer based CLIP models, "ViT-B/32" and "ViT-B/16". To optimize HDN we use an ADAM
Optimizer with betas= (0.9, 0.999), learning rate= 5e− 5, weight decay= 0.
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A.2.5 Training Time

The training time of the HDN on 20 domains for 1000 iterations on single Tesla A100 GPUs takes
about 2 hours.

A.2.6 Ablation Study on the Loss Terms

We perform both the quantitative and qualitative ablation study on the domain-norm and tt-direction
loss terms that are defined in Appendix A.2.1.

For the qualitative analysis we consider three domains (Anime Painting, Mona Lisa Painting, A
painting in Ukiyo-e style) for the HyperDomainNet that was trained on 20 different domains (see
the full list in Appendix A.2.4). We provide the visual comparison for these domains with respect
to the using loss terms in the training loss of the HyperDomainNet (see Figure 7). We can see that
without additional loss terms the model considerably collapses within each domain. After adding
domain-norm it solves the problem of collapsing within domains but it starts mix domains with each
other, so we obtain the same style for different text descriptions. And after using tt-direction loss
eventually allows us to train the HyperDomainNet efficiently on these domains without collapsing.

For the quantitative results we use the metrics Quality and Diversity that were introduced in Ap-
pendix A.3.3. The results are provided in Table 4. We see that the initial model without loss terms
obtains good Quality but very low Diversity. The domain-norm significantly improves the diversity in
the cost of degrading the Quality. The tt-direction provides a good balance between these two metrics
which we also we qualitatively in Figure 7.

Direction
Direction

+ Domain-norm
Direction

+ Domain-norm
+ tt-direction

Anime
Painting

Mona Lisa
Painting

A painting
in Ukiyo-e

style

Figure 7: Ablation study on the loss terms of the HyperDomainNet.

Additional Samples We show results for the first 10 domains in Figure 5. The next 10 domains
we provide in Figure 8.
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Table 4: Ablation study on the loss terms of the HyperDomainNet.
Model Quality Diversity

Anime Painting

Multi-Domain 0.271 0.128
Multi-Domain+domain_norm 0.210 0.338
Multi-Domain+domain_norm+tt_direction 0.260 0.256

Zombie

Multi-Domain 0.254 0.079
Multi-Domain+domain_norm 0.246 0.203
Multi-Domain+domain_norm+tt_direction 0.258 0.191

Across ten domains

Multi-Domain 0.275 ± 0.035 0.099 ± 0.026
Multi-Domain+domain_norm 0.218 ± 0.026 0.306 ± 0.040
Multi-Domain+domain_norm+tt_direction 0.247 ± 0.026 0.250 ± 0.041

HyperDomainNet
Inference on domains from the train list

Cubism
Painting

Impressionism
Painting

Edvard Munch
Painting

Dali
Painting

Mark
Zuckerberg

Tolkien
Elf

The Shrek

The Thanos

The Hulk

Nicolas
Cage

Figure 8: Other domains which were included into train description list from left block of Figure 5.
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A.2.7 Training on Potentially Arbitrary Number of Domains

Improving the generalization ability of the HDN is challenging because it tends to overfit on training
domains and for unseen ones it predicts domains that are very close to train ones. One way to
tackle this problem is to considerably extend the training set. For this purpose, we use three
techniques: (i) generating many training domains by taking combinations of different ones; (ii)
sampling CLIP embeddings from convex hull of the initial training embeddings; (iii) resample initial
CLIP embeddings given cosine similarity. We discuss each technique further.

Generating Training Domains by Taking Combinations We can describe domains by indicating
different properties of the image such as image style (e.g. Impressionism, Pop Art), image type
(e.g. Photo, Painting), artist style (e.g. Modigliani). Also we can construct new domains by taking
combinations of these properties (e.g. Modigliani Painting, Impressionism Photo). So, we take 32
image styles, 13 image types and 7 artists and by taking all combinations of these properties we come
up with 1040 domains. We provide the full list of properties we use in our training:

• image styles: ’Pop Art’, ’Impressionism’, ’Renaissance’, ’Abstract’, ’Vintage’, ’Antiquity’,
’Cubism’, ’Disney’, ’Chinese’, ’Japanese’, ’Spanish’, ’Italian’, ’Dutch’, ’German’, ’Surreal’,
’WaltDisney’, ’DreamWorks’, ’Modern’, ’Realism’, ’Starry Night’, ’Old-timey’, ’Pencil’,
’Gouache’, ’Acrylic’, ’Watercolor’, ’Oil’, ’Black’, ’Blue’, ’Charcoal’, ’Manga’, ’Kodomo’;

• image types: ’Portrait’, ’Image’, ’Photo’, ’Painting’, ’Graffiti’, ’Photograph’, ’Cartoon’,
’Stereo View’, ’Drawing’, ’Graphics’, ’Mosaic’, ’Caricature’, ’Animation’;

• artists: ’Raphael’, ’Salvaror Dali’, ’Edvard Munch’, ’Modigliani’, ’Van Gogh’, ’Claude
Monet’, ’Leonardo Da Vinci’

The algorithm of generating combinations is

Figure 9: The algorithm of generating combinations implemented on Python.

Generating CLIP Embeddings from Convex Hull In the usual training of the HDN as in Ap-
pendix A.2.4 we use the CLIP embeddings of the target domains tB1 = ET (B1), . . . , tBm =
ET (Bm). To cover more CLIP space we propose to use new embeddings t′B1

, . . . , t′Bm
from the

convex hull of the initial ones:

t′Bi
=

m∑
j=1

αjtBj
, i = 1, . . . ,m, (17)

where α1, . . . , αm ∼ Dir(β) (Dirichlet distribution),
m∑
i=1

αi = 1, αi > 0, i = 1, . . . ,m. (18)

We use β =
1

batch size
.

Resampling Initial CLIP Embeddings Given Cosine Similarity To further extend the CLIP
space we cover during training of the HDN we resample initial CLIP embeddings of the target
domains tB1

, . . . , tBm
constrained to the cosine similarity. So, before generating from convex hull

we replace the initial embeddings by new ones t̂B1
, . . . , t̂Bm

such that cos(tB1
, t̂B1

) = γ. To obtain
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these embeddings we use the following operation:

t̂Bi
= resample(tBi

), i = 1, . . . ,m, (19)
where resample(tBi

) = tBi
· cos γ + norm(v − projtBi

v) · sin γ, (20)

v ∼ N (v|0, I), norm(u) =
u

||v||2
(21)

It allows us to cover the part of the CLIP space outside of the initial convex hull. We observe that it
improves the generalization ability of the HDN.

Hyperparameters We train the HDN for 10000 number of iterations. We use batch size of 96.
We set weights of the terms from Equation (16) as follows: λdirection = 1.0, λtt−direction = 0.4,
λdomain−norm = 0.8. We use two Vision-Transformer based CLIP models, "ViT-B/32" and "ViT-
B/16". To optimize HDN we use an ADAM Optimizer with betas= (0.9, 0.999), learning rate= 5e−5,
weight decay= 0.

Training Time The training time of the HDN for 10000 iterations on 4 Tesla A100 GPUs takes
about 50 hours.

Additional Samples Additional samples of unseen domains for the HDN is demonstrated in
Figure 10.
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HyperDomainNet
Inference on unseen domain descriptions

Black-white
Photo

Suprematism

Spray
Painting

Disney
Princess

Fresco

Satire
Painting

Comic book
Sketch

Sculpture

The Scream
Painting

Sketch

Werewolf

The Joker

Figure 10: Other visual results for descriptions which were not included into training list during HDN
training.
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A.3 Results for Text-Based Domain Adaptation

A.3.1 Hyperparameters

StyleGAN-NADA with our parameterization trained for 600 iterations with batch size of 4. Style
mixing probability is set to 0.9, the weight of the Ldirection is 1.0 and Lindomain−angle is 0.5 and
ADAM optimizer with betas= (0., 0.999), learning rate= 0.002, weight decay= 0.

For the original StyleGAN-NADA [6] number of iterations is decreased to 200 because for more
iterations it starts to collapse.

"ViT-B/32" and "ViT-B/16" CLIP Vision-Transformed models used in all setups.

A.3.2 Training and Inference Time

The training of the one target domain for 600 iterations on a single Tesla A100 GPU takes about 15
minutes on batch size 4.

The inference time consists of two parts. The first one is the embedding process of the real image
which takes 0.23 seconds using ReStyle [1]. The second part is the forward pass through adapted
GAN generator which works in 0.02 seconds.

A.3.3 Quantitative Results

We provide the quantitative comparison for the text-based domain adaptation by evaluating the
"Quality" and "Diversity" metrics in a straightforward way.

As the “Quality” metric we estimate how close the adapted images to the text description of the target
domain. That is we compute the mean cosine similarity between image CLIP embeddings and the
embedding of the text description:

Quality =
1

n

n∑
i=1

〈ET (target_text), EI(Ii)〉, where (22)

n - number of the generated adapted images (we use 1000),
ET - text CLIP encoder,
EI - image CLIP encoder,

I1, . . . , In - generated adapted images.

As EI encoder we use only ViT-L/14 image encoder that is not applied during training (in the training
we use ViT-B/16, ViT-B/32 image encoders).

As the “Diversity” metric we estimate the mean pairwise cosine distance between all adapted images:

Diversity =
2

n(n− 1)

n∑
i<j

(1− 〈EI(Ii), EI(Ij)〉), where (23)

n - number of the generated adapted images (we use 1000),
EI - image CLIP encoder,

I1, . . . , In - generated adapted images.

We compute these two metrics for the ten text domains: Anime Painting, Mona Lisa Painting, 3D
Render Pixar, Sketch, Ukiyo-e Painting, Fernando Botero Painting, Werewolf, Zombie, The Joker,
Neanderthal. We separately report metrics for two domains Anime Painting and Zombie to better
reflect the metrics behaviour. Also we report the overall metrics across all nine domains. The results
are provided in Table 5.

From these results we see that our model performs comparably with the StyleGAN-NADA with
respect to Quality while having better Diversity. Also we can observe that the indomain angle
loss significantly improves the Diversity for both models StyleGAN-NADA and Ours while lightly
decreases the Quality.
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For the multi-domain adaptation model we see that it has lower diversity than StyleGAN-NADA and
Ours and comparable Quality while being adapted to all these domains simultaneously.

Also we report samples for the StyleGAN-NADA and our model with and without indomain angle
loss in Figures 11 and 12. We see that qualitatively indomain angle loss also significantly improves
the diversity of the domain adaptation methods.

A.3.4 Additional Samples

We show additional domains for FFHQ dataset in Figure 13. Also we demonstrate how our method
works on another datasets such as LSUN Church in Figure 14, LSUN Cats in Figure 15, and LSUN
Cars in Figure 16.

Table 5: Evaluation of text-based adaptation methods.
Model Quality Diversity

Anime Painting
StyleGAN-NADA [6] 0.289 0.244
Ours 0.284 0.305
StyleGAN-NADA+indomain 0.256 0.401
Ours+indomain 0.251 0.404
Multi-Domain+domain_norm+tt_direction 0.260 0.256

Zombie
StyleGAN-NADA [6] 0.257 0.153
Ours 0.264 0.275
StyleGAN-NADA+indomain 0.261 0.354
Ours+indomain 0.247 0.372
Multi-Domain+domain_norm+tt_direction 0.258 0.191

Across ten domains
StyleGAN-NADA [6] 0.270 ± 0.032 0.196 ± 0.034
Ours 0.256 ± 0.019 0.306 ± 0.030
StyleGAN-NADA+indomain 0.249 ± 0.018 0.394 ± 0.026
Ours+indomain 0.240 ± 0.018 0.398 ± 0.026
Multi-Domain+domain_norm+tt_direction 0.247 ± 0.026 0.250 ± 0.041
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StyleGAN-NADA Ours
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The Joker

Neanderthal

Figure 11: Comparison of text-based domain adaptation methods without indomain angle loss. Left
column represents StyleGAN-NADA [6], right column represents our model.
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StyleGAN-NADA (w indomain) Ours (w indomain)
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Painting
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The Joker
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Figure 12: Comparison of text-based domain adaptation methods with indomain angle loss. Left
column represents StyleGAN-NADA [6], right column represents our model.
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StyleGAN-NADA Ours
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Figure 13: Comparison for other domains in single domain adaptation setup on real images. Left
column represents StyleGAN-NADA [6], right column represents results with same approach patched
with ours parameterization.
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StyleGAN-NADA Ours
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Figure 14: Single domain adaptation comparison for LSUN Church dataset.
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StyleGAN-NADA Ours
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Figure 15: Single domain adaptation comparison for LSUN Cats dataset.
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StyleGAN-NADA Ours
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Figure 16: Single domain adaptation comparison for LSUN Cars dataset.

A.4 Results for One-Shot Domain Adaptation

A.4.1 Hyperparameters

For each target style image we adapt the generator for 600 iterations as in [48]. We use batch size of
4, fine-tune all layers of the StyleGAN2, set the mixing probability to 0.9. We use all loss terms as in
[48] with the same weights and add the Lindomain−angle term with weight 2. For all experiments,
we use an ADAM Optimizer with a learning rate of 0.002.

A.4.2 Training and Inference Time

The training of the one target style image for 600 iterations on a single Tesla A100 GPU takes about
20 minutes. The same as for the text-based adaptation the inference time consists of two parts:
embedding process and the forward pass through the generator. The embedding process takes 0.36
seconds for e4e [32] and two minutes for II2S [49]. The second part is the forward pass through
adapted GAN generator which works in 0.02 seconds.

A.4.3 Additional Samples

We provide additional samples in Figures 17 and 18. Also we provide results for other baseline
methods in Figure 19.
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MTG MTG (+indomain) Ours

Figure 17: Comparison of one-shot domain adaptation methods: original MindTheGap [48] (left),
MindTheGap + indomain (center) and MindTheGap with our parameterization (right).

MTG MultiDomain StyleGAN-NADA

Figure 18: Comparison of one-shot domain adaptation methods: original MindTheGap [48] (left),
Multi-Domain model (center) and StyleGAN-NADA (right).
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Figure 19: Additional comparisons with other baseline methods including TargetCLIP [4], Gatys et
al. [7], and AdaIN [11]. Compare these results to our method in Figure 4. We can see that both the
original MindTheGAP and with our parameterization has fewer artifacts.
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